Donnerstag, 15. Dezember 2016

Lösungen bei Leifiphysik

Die beiden Blätter heute waren von Leifiphysik abgeschrieben (im Wesentlichen).
Ich gebe die Links zu den Aufgaben, unten findet ihr dann die Lösungen

Hier die beiden zum Photoeffekt
http://www.leifiphysik.de/themenbereiche/quantenobjekt-photon/lb/photoeffekt-2011
http://www.leifiphysik.de/themenbereiche/quantenobjekt-photon/lb/auge-als-lichtsensor

und hier die zu den de-Broglie-Wellen
http://www.leifiphysik.de/themenbereiche/quantenobjekt-elektron/lb/doppelspaltversuch-mit-elektronen
http://www.leifiphysik.de/themenbereiche/quantenobjekt-elektron/lb/materiewellen-bei-fullerenen

übrigens, die Leifi-Seiten sind für Lehrer sehr interessant, wenn man nach Aufgaben sucht.
http://media.4teachers.de/images/thumbs/image_thumb.4871.jpg

Abschnitte im Buch

Wie gesagt, mag ich den Aufbau im Buch nicht so, weil dort viel zwischen Wellen und Quanten hin- und hergesprungen wird. Alles was wir über Quanten bisher behandelt haben, steht auf folgenden Seiten im Buch:

Seiten 195-203 Lichtquanten, Photonen
Überblick auf den Seiten 224-225 der Abschnitt Lichtquanten. (den Abschnitt Wellenoptik brauchen wir auch)

Seiten 226 bis 232 Quantenobjekte, Abschnitt 6.1.
NICHT den Abschnitt 6.1.3 über Verschränkung, den ich lieber später machen würde, nicth den Kasten zur Teleportation ("beam me up, Scotty") und nicht den kurzen Abschnitt üpber Elektronenbahnen auf S232

Aufgaben habt ihr hier schon, und habt ihr auch heute nochmal bekommen.
Spontan gefallen mir noch S223/1,2,4 und S240/5,6,7,9,11

Montag, 12. Dezember 2016

nächste Klausur

Weil wir so viel durcheinandergekommen sind mit der Betreuung der Kleinen und auch mit meiner Exkursion nach Dettingen, hätte ich einen Änderungsvorschlag.

Machen wir unsere Klausur am Dienstag 20.12. statt am Donnerstag 15.12.? Lasst uns das morgen früh mit der dritten Gruppe nochmal besprechen.

Außerdem weise ich nochmal auf die Übungsaufgaben hin, die hier im Blog genannt sind, und zu denen ich Lösungswege aufgeschrieben habe.
Es geht also um alles, was wir seit dem Photoeffekt hatten.
Photonen, Impuls von Photonen p=h/lambda, Energie von Photonen W=hf, und die DeBroglie-Welle, die wir bei den Elektronen gesehen haben.

Donnerstag, 8. Dezember 2016

Weitere Aufgaben,

... an denen ihr üben könnt.

S223/13 a) nicht unbedingt, aber b)

S222/8
S201/6

Überlegt euch sinnvolle Kommentare zu S223/15

Und schließlich Aufgaben zur De-Broglie-Wellenlänge
S233/2
S233/6

Lösungen zu den Aufgaben aus dem Buch

Im Post vom 29.11. stehen einige Aufgaben aus dem Buch. Hier sind Lösungen dazu.

S 202/3
Man muss sich die Masse des Meteoriten Überlegen. Weiß man natürlich nicht genau, drum muss man sinnvoll abschätzen.
Volumen: Bei einem Durchmesser von 1m sollte es etwas weniger als 1m³ sein.
Bei einem Würfel mit Kantenlänge 1m ist es genau 1m³.
Bei einer Kugel mit Durchmesser 1m ist es 4/3*pi/8 m², also etwas über 0,5m³.
Nehmen wir 0,7m³ als sinnvolles Mittelmaß.
Dichte. Wasser hätte 1000 kg/m³, typisches Gestein um die 3000 kg/m³. Nehmen wir wieder die Mitte, also 2000 kg/m³. Das macht  eine Masse von eta
m = 1,4 t = 1400 kg

Bei jedem Photon ist
die Energie W=hf = hc/lambda,
der Impuls  p = h/lambda
Also ist p = W/c, egal welche Wellenlänge/Frequenz das Photon hat.
Umgestellt ergibt sich W=p*c. Um also den Impuls p zu übertragen, brauche ich die Energie =p*c.

Geschwindigkeitsänderung um 1m/s entspricht eine Impulsänderung um 1400 kg*m/s.
Dazu braucht man eine Energie von
1400 kg*m/s * 3*10^8 m/s  = 4,2*10^11 J.
Strahlung von 0,5 kW = 500 W bringt pro Sekunde 500J.
Also braucht man insgesamt viele Sekunden, nämlich
4,2*10^11 / 500  s = 8,4*10^8 s = 10 000 Tage = 26,5 Jahre.

Hinweise:
S202/1 Denkt dran, ob Photonen absorbiert oder "zurückgeschleudert" werden.
S202/2 Überlegt euch um wieviel kleiner die Querschnittsfläche und das Volumen werden, wenn ich einen Klumpen von 1m Durchmesser auf 1mm verkleinere.
Energie- und Impulsaufnahme geschehen über die Fläche, die Masse und damit die Trägheit hangen ab vom Volumen.

S222/6
Es liegt am sog. Compton-Effekt. Die Elektronen im Graphitblock werden von den Photonen angestoßen und nehmen Impuls und Bewegungsenergie auf. Diese Energie fehlt den gestreuten Photonen, weshalb sie eine niedrigere Frequenz und größere Wellenlänge haben.
Die Wellenlängenänderung ist
lambda_nachher - lambda_vorher = h/(mc)*(1 - cos(theta)) = 2,2*10^-12 m = 2,2 pm.
Die neue Wellenlänge ist also größer, nämlich 4,7 pm.

S201/5
Wichtig 1 eV =  1,6*10^-19 C * 1 V = 1,6*10^-19 J
Energie eines Photons mit lambda=230 nm
W = h f = h*c/lambda = 8,6*10^-19 J = 5,4 eV
Weil Elektronen nur mit 1,8 eV austreten, muss die Austrittsarbeit
WA = 3,6 eV = 5,8*10^-19 J sein.

S201/3
In einem Metall sind frei bewegliche Elektronen (Leitungselektronen) und positiv Geladene Reste ("Rümpfe") der Atome. Diese binden die Elektronen an den Metallkörper. Gegen ihre Anziehungskraft muss man Energie aufbringen, wenn man Elektronen herauslösen will - die Autrittsenergie.

z.B. so: Bestrahle das Metall mit Photonen mit einer festen Wellenlänge bzw. Frequenz. Daraus bestimmt man die Energie der Photonen, W = h*f.
Miss die maximale Energie, die die Elektronen haben, wenn sie das Metall verlassen, z.B. mit einer Gegenspannung, ab der der Photostrom versiegt. Diese Maimalenergie ist kleiner als die der Photonen, weil sie beim Austritt etwas "bezahlen" müssen.
Die Differenz beider Energien ist die Austrittsenergie.

S223/10
Energie der Photonen  W=h*c/lambda=4,97*10^-19 J
Austrittsenergie von Caesium 1,94eV=3,10*10^-19 J
Energie der ausgetretenen Elektronen  W=1,87*10^-19J
entspricht einer Geschwindigkeit  v = Wurzel(2W/m) = 6,4*10^5 m/s

S223/11
Minimal benötigte Energie pro Sekunde:    10^-18 J
Energie der Photonen   h*c/lambda=3,43*10^-19 J
Das entspricht 10^-18/3,43*10^-19 = 2,9 oder knapp 3 Photonen pro Sekunde.