Donnerstag, 27. Februar 2014
Klimawandel
ist beschrieben in einer Übersicht, herausgegeben von der britschen Royal Society und der US-amerikanischen Academy of Science.
Montag, 24. Februar 2014
Kugelbahn - nichtharmonische Schwingung
Mit VIANAnet analysiertes Video der Kugel, die in der gelben Kunststoffbahn hin- und herrollt.
Man sieht, wie die Periode mit abnehmender Amplitude länger wird.
Die Zeiten der oberen Umkehrpunkte sind 5.72s, 7.31s, 9.44s und 11.92s.
Die Zeiten der unteren Umkehrpunkte sind 6.48s, 8.32s, 10.64s und 13.32s.
Und hier ist das Video:
Man sieht, wie die Periode mit abnehmender Amplitude länger wird.
Die Zeiten der oberen Umkehrpunkte sind 5.72s, 7.31s, 9.44s und 11.92s.
Die Zeiten der unteren Umkehrpunkte sind 6.48s, 8.32s, 10.64s und 13.32s.
Und hier ist das Video:
Samstag, 22. Februar 2014
Differentialgleichungen
Manchmal kann man die Lösungen von Differentialgleichungen hinschreiben. Wir kennen das z.B. beim harmonischen Oszillator (Federpendel) mit
m s" = - D s
und der passenden Lösung
s(t) = s * sin( w t) mit w = (D/m)^(1/2)
oder beim sich entladenden Kondensator mit
1/C Q = - R Q'
und der Passenden Lösung
Q(t) = Q * e^(-t/(RC)) bzw. U(t) = U * e^(-t/(RC))
Manchmal sehen die Lösungen höllisch kompliziert aus, manchmal hilft es, sie schrittweise zu lösen: Wenn man zu einem bestimmten Zeitpunkt t die Position s(t) und die Geschwindigkeit v(t) eines schwingenden Körpers kennt, dann kann man berechnen, wo er sich kurze Zeit später befindet und wie schnell er dann ist.
Die einfachste Methode ist weiterzurechnen mit kleinen Zeitschritten dt:
s(t+dt) = s(t) + dt*v(t) und v(t+dt) = v(t) + F/m * dt,
wobei die Kraft F von der Position s(t) abhängen kann, bei der Feder F=-D*s(t), und auch von der Geschwindigkeit, wenn Reibung auftritt.
Dieses Verfahren heißt Euler-Verfahren, es hat seine Schwächen, ist aber einfach zu verstehen. Man kann es leicht selber programmieren, z.B. sogar auf dem "guten", alten GTR.
Die Programmierarbeit abgenommen hat uns der Programmierer dieses Apps. Mit ihm sollt ihr ein paar einfache Beispiele ausprobieren. Der Screenshot zeigt das App-Fenster in den für uns geeigneten Einstellungen.
Es geht um einen Schwingenden Körper, x bezeichnet die Auslenkung und y seine Geschwindigkeit.
Einstellungen wie oben beschrieben. Ihr seht die Gleichung dy/dt = -k*x^3 für x"=-k*x³.
Aufgaben:
Aufgaben:
m s" = - D s
und der passenden Lösung
s(t) = s * sin( w t) mit w = (D/m)^(1/2)
oder beim sich entladenden Kondensator mit
1/C Q = - R Q'
und der Passenden Lösung
Q(t) = Q * e^(-t/(RC)) bzw. U(t) = U * e^(-t/(RC))
Manchmal sehen die Lösungen höllisch kompliziert aus, manchmal hilft es, sie schrittweise zu lösen: Wenn man zu einem bestimmten Zeitpunkt t die Position s(t) und die Geschwindigkeit v(t) eines schwingenden Körpers kennt, dann kann man berechnen, wo er sich kurze Zeit später befindet und wie schnell er dann ist.
Die einfachste Methode ist weiterzurechnen mit kleinen Zeitschritten dt:
s(t+dt) = s(t) + dt*v(t) und v(t+dt) = v(t) + F/m * dt,
wobei die Kraft F von der Position s(t) abhängen kann, bei der Feder F=-D*s(t), und auch von der Geschwindigkeit, wenn Reibung auftritt.
Dieses Verfahren heißt Euler-Verfahren, es hat seine Schwächen, ist aber einfach zu verstehen. Man kann es leicht selber programmieren, z.B. sogar auf dem "guten", alten GTR.
Die Programmierarbeit abgenommen hat uns der Programmierer dieses Apps. Mit ihm sollt ihr ein paar einfache Beispiele ausprobieren. Der Screenshot zeigt das App-Fenster in den für uns geeigneten Einstellungen.
Es geht um einen Schwingenden Körper, x bezeichnet die Auslenkung und y seine Geschwindigkeit.
- Damit man den zeitlichen Verlauf der Auslenkung sehen kann, muss man auf der waagrechten Achse die Zeit t einstellen (Zeile mit Pfeil direkt unter dem Schaubild) und auf der senkrechten die Auslenkung x (direkt rechts neben dem Schaubild)
- In den nächsten beiden Zeilen sehen die Gleichungen
dx/dt=y heißt in unserer Sprache x'=v (Auslenkungsänderung ist die Geschwindigkeit)
dy/dt heißt für uns v' und damit Beschleunigung a oder auch x". Im Screenshot ist die Gleichung eines harmonischen Oszillators eingetragen: -k*x mit dem Wert k=2. Man kann auch Masse und Federhärte eingeben: m=0.5; d=5; -d/m*x - Die drei Zeilen mit Min und Max geben den gezeigten Ausschnitt des Graphen an.
- Schaltet den Reiter unten rechts von Euler auf RK4, dieses Verfahren (Runge-Kutta 4. Ordnung) ist genauer und braucht auch nicht viel mehr Rechenzeit. Für die größe der Zeitschritte dt bietet sich 0.1 an, eingeben bei Step rechts unten
- Jetzt klickt ihr auf Submit All, und die Einstellungen werden in die Rechnung übernommen.
- Mit Clear All könnt ihr bestehende Kurven löschen und dann mit der Maus neue Anfangsbedingungen setzen, indem ihr einfach in das Schaubild klickt. Von diesem x-Wert aus wird dann eine neue Berechnung mit Anfangsgeschwindigkeit y=0 begonnen und gezeichnet.
- Überprüfe wie die Periodendauer von der anfänglichen Auslenkung und Amplitude abhängt.
- Wähle verschiedene Werte für k bzw. für D/m und überprüfe die Periodendauer. Passt es zur Formel im Unterricht T=2 pi (m/D)^0.5 bzw. T = 2 pi / k^0.5 ?
Einstellungen wie oben beschrieben. Ihr seht die Gleichung dy/dt = -k*x^3 für x"=-k*x³.
Aufgaben:
- Miss, wie die Periodendauer von der anfänglichen Auslenkung abhängt. Erstelle ein Schaubild für einen bestimmten Wertebereich, z.B. 0.2 bis 2.5
- Wiederhole für einen anderen Wert des Vorfaktors k.
Aufgaben:
- Miss die Periodendauer für verschiedene Amplituden. Passt es zur im Unterricht hergeleiteten Formel T=4 (2s/k)^0.5 ?
- Wiederhole für einen anderen Wert von k und überprüfe wieder.
Donnerstag, 20. Februar 2014
Elektromagnetische Wellen
noch haben wir es ja nicht, aber hier schon mal ein einfaches Hilfsmittel.
Montag, 17. Februar 2014
Schaukeln
Bei den leeren Schaukeln müssen wir berücksichtigen, dass die Ketten auch eine Masse haben, und zwar eine größere als das Sitzbrett am unteren Ende. Bei der 4m-Schaukel haben wir die auf ungefähr 6kg, bei der 2m-Schaukel auf 3kg geschätzt, indem wir einen Teil der Kette auf die Küchenwaage gelegt und dann auf die Gesamtlänge hochgerechnet haben. Der Sitz hatte ungefähr 2kg Masse.
Es ist insofern anders als das reine Fadenpendel, als ein Teil der Masse näher an der Aufhängung ist, als wenn die gesamte Masse am unteren Ende konzentriert wäre. Es muss daher weniger Masse bewegt werden und die Pendelei geht leichter. Die Pendelfrequenz ist also höher als bei einem reinem Fadenpendel mit 4m bzw. 2m Länge.
Die genaue Formel ist zu schwierig für unsere Physikstunden, ich gebe hier nur die theoretisch berechneten Zahlenwerte:
Es ist insofern anders als das reine Fadenpendel, als ein Teil der Masse näher an der Aufhängung ist, als wenn die gesamte Masse am unteren Ende konzentriert wäre. Es muss daher weniger Masse bewegt werden und die Pendelei geht leichter. Die Pendelfrequenz ist also höher als bei einem reinem Fadenpendel mit 4m bzw. 2m Länge.
Die genaue Formel ist zu schwierig für unsere Physikstunden, ich gebe hier nur die theoretisch berechneten Zahlenwerte:
- Bei 4m Länge hätte das reine Fadenpendel T=4,0s die Kettenschaukel dagegen 3,6s
- Bei 2m Länge sind es T=2,8s für das Fadenpendel und 2,6s für die Schaukel mit Kette.
Passt das zu euren Messwerten?
PS.: Wer sich traut, kann es sich von mir erklären lassen.
Abonnieren
Posts (Atom)